Intracellular magnesium-dependent modulation of gap junction channels formed by neuronal connexin36.

نویسندگان

  • Nicolás Palacios-Prado
  • Gregory Hoge
  • Alina Marandykina
  • Lina Rimkute
  • Sandrine Chapuis
  • Nerijus Paulauskas
  • Vytenis A Skeberdis
  • John O'Brien
  • Alberto E Pereda
  • Michael V L Bennett
  • Feliksas F Bukauskas
چکیده

Gap junction (GJ) channels composed of Connexin36 (Cx36) are widely expressed in the mammalian CNS and form electrical synapses between neurons. Here we describe a novel modulatory mechanism of Cx36 GJ channels dependent on intracellular free magnesium ([Mg(2+)]i). We examined junctional conductance (gj) and its dependence on transjunctional voltage (Vj) at different [Mg(2+)]i in cultures of HeLa or N2A cells expressing Cx36. We found that Cx36 GJs are partially inhibited at resting [Mg(2+)]i. Thus, gj can be augmented or reduced by lowering or increasing [Mg(2+)]i, respectively. Similar changes in gj and Vj-gating were observed using MgATP or K2ATP in pipette solutions, which increases or decreases [Mg(2+)]i, respectively. Changes in phosphorylation of Cx36 or in intracellular free calcium concentration were not involved in the observed Mg(2+)-dependent modulation of gj. Magnesium ions permeate the channel and transjunctional asymmetry in [Mg(2+)]i resulted in asymmetric Vj-gating. The gj of GJs formed of Cx26, Cx32, Cx43, Cx45, and Cx47 was also reduced by increasing [Mg(2+)]i, but was not increased by lowering [Mg(2+)]i; single-channel conductance did not change. We showed that [Mg(2+)]i affects both open probability and the number of functional channels, likely through binding in the channel lumen. Finally, we showed that Cx36-containing electrical synapses between neurons of the trigeminal mesencephalic nucleus in rat brain slices are similarly affected by changes in [Mg(2+)]i. Thus, this novel modulatory mechanism could underlie changes in neuronal synchronization under conditions in which ATP levels, and consequently [Mg(2+)]i, are modified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Determinants of Magnesium-Dependent Synaptic Plasticity at Electrical Synapses Formed by Connexin36

Neuronal gap junction (GJ) channels composed of connexin36 (Cx36) play an important role in neuronal synchronization and network dynamics. Here we show that Cx36-containing electrical synapses between inhibitory neurons of the thalamic reticular nucleus are bidirectionally modulated by changes in intracellular free magnesium concentration ([Mg(2+)]i). Chimeragenesis demonstrates that the first ...

متن کامل

Functional asymmetry and plasticity of electrical synapses interconnecting neurons through a 36-state model of gap junction channel gating

We combined the Hodgkin-Huxley equations and a 36-state model of gap junction channel gating to simulate electrical signal transfer through electrical synapses. Differently from most previous studies, our model can account for dynamic modulation of junctional conductance during the spread of electrical signal between coupled neurons. The model of electrical synapse is based on electrical proper...

متن کامل

GABAergic compensation in connexin36 knock-out mice evident during low-magnesium seizure-like event activity.

Gap junctions within the cerebral cortex may facilitate cortical seizure formation by their ability to synchronize electrical activity. To investigate this, one option is to compare wild-type (WT) animals with those lacking the gene for connexin36 (Cx36 KO); the protein that forms neuronal gap junctions between cortical inhibitory cells. However, genetically modified knock-out animals may exhib...

متن کامل

Functional properties of channels formed by the neuronal gap junction protein connexin36.

The expression and functional properties of connexin36 (Cx36) were examined in two communication-deficient cell lines (N2A-neuroblastoma and PC-12 cells) transfected with Cx36 and in hippocampal neurons that express the connexin endogenously. Transfected cells expressed the expected 2.9 kb Cx36 transcript and Cx36 immunoreactivity, whereas nontransfected cells were devoid of Cx36. The relations...

متن کامل

Connexin36 Gap Junction Blockade Is Ineffective at Reducing Seizure-Like Event Activity in Neocortical Mouse Slices

Despite much research, there remains controversy over the role of gap junctions in seizure processes. Many studies report anticonvulsant effects of gap junction blockade, but contradictory results have also been reported. The aim of this study was to clarify the role of connexin36 (Cx36) gap junctions in neocortical seizures. We used the mouse neocortical slice preparation to investigate the ef...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 33 11  شماره 

صفحات  -

تاریخ انتشار 2013